
Groupoid Infinity

Quanterall HQ Varna, Bulgaria 2019

Namdak Tonpa

The Languages

— PhD student, 3-rd year of education (https://cubical.systems)
— Author of 8 programming languages and 2 runtime cores
— But more famous for N2O framework (https://n2o.dev)
— Love to create programming languages and talk about them
— Know how to convert open source to money
— Aware of all operating systems/programming languages (~100/~1000)

— GROUPOID — The Language of Space
— SYNRC — Application Layer Formal Specification and Implementations
— VOXOZ — Virtual Machines and Network Infrastructure

About Speaker

Github Organizations

— Main Contributions
— Industrial Compilers
— Fast Interpreters
— Formal Verification

— History
— Workflow Languages
— Financial Languages
— Contract Languages

Talk Structure

I. Languages

The Languages

II. Processing

— John McCarthy [LISP]
— Robin Milner [ML, Pi Calculus, HOL]
— Simon Peyton Jones [Haskell]
— Xavier Leroy [OCaml]
— Niko Matsakis [Rust] Linear Types
— Joe Armstrong [Erlang] … and many others

— Nicolaas Govert de Bruĳn [AUTOMATH]
— Thierry Coquand [Coq]
— Ulf Norell [Agda]
— Leonardo de Moura [Lean] … and not so many

Main Contributions

— V8, WebAssembly (any)
— LuaJIT (nginx)
— JVM (Oracle)
— CLR (MS) … and other JITs

— IR/MIR/LLVM (clang, rust)
— OCaml/GHC
— SPIRAL

MOTTO 1: If you have compact language that fits L1 cache along with its
interpreter, then you don’t need JIT! However you still need vectorization.

MOTTO 2: At enterprise scale you still need types or ULC targeted
extraction.

Industry

POLYREC

No Terms
On Types

P2:
No Types
On Types

AUTOMATH

STLC

System Fω:
Haskell, Scala, 1ML
Almost CoC
No Types
On Values

Untypled SLC:
Erlang, LISP,

JavaScript

http://ttic.uchicago.edu/~dreyer/
course/papers/barendregt.pdf

Infinity Topoi
Agda, Coq, Lean, Om

CoC: Morte, Henk

System F:
ML, Miranda,
OCaml

CoC: * ↝ * ▢ ↝ * * ↝ ▢ ▢ ↝ ▢
Fω: * ↝ * ▢ ↝ * ▢ ↝ ▢

AUT: * ↝ * * ↝ ▢
P2: * ↝ * ▢ ↝ * * ↝ ▢

 F: * ↝ * ▢ ↝ *

λ-Calculi
in Extended Lambda Cube

Mathematical Formal Software Verification unveils the inner structure of
phenomena and avoid wide range of errors.

Formal Verification

1) Mars Climate Orbiter (1998), conversion inch/met — $80M;
2) Ariane Rocket (1996), downcast from 64 to 16 bit — $500M;
3) FPU DIV Error Pentium (1994) — $300M;
4) Business Contract Error EVM — $50M;
5) Error in SSL (heartbleed) — $400M.

1) IEEE Std 1012-2016 — V&V Software verification and validation (4 layers)
2) ESA PSS-05-10 1-1 1995 — Guide to software verification and validation;
3) ISO/IEC 13568:2002 — Z formal specification notation.

— Coq: VST, DeepSpec
— Haskell, HOL: L4
— Even Manual Proofs!!!

Expensive and long way of
doing things…

… seems a better way exist —
direct certified extraction with
no imtermediate proofs!

— Coq: The best macroassembler
— Coq.io — OCaml/Lwt bindings
— Agda x86
— Clash, Lambda to VDHL/Verilog

Attempts to Fix C/C++

Deep Embedding

— EMAIL: FSM
— Event-Condition-Action Reactive Rule Engines
— Expert Systems: RETE Engine, Prolog
— Workflow Standards of the past: XPDL, BPML, OpenWFE, WWF and jBPM
— Workflow Standard After 2008: BPMN
— Trading: TpML, Fix, business contract routers, cross-exchanges, arbitrage
— Business Contacts Virtual Machines: EVM, Script VM, aebytecode
— Business Contract Languges: Sophia, Solidity, Plutus
— MLTT Frameworks: Dhall
— Iinteraction Networks Evaluators: Formality, Moonad
— Stream Processing: Oz, Erlang, np/ling, Futhark

History of Processing Languages

Prerequisites for bootstrapping are algebraic data types: strust (*) and
union (+) from C/C++

Logic Core: Runtime Core:

data pts = star (n: nat)
 | var (l: nat)
 | pi (l: nat) (d c: pts)
 | lambda (l: nat) (d c: pts)
 | app (f a: pts)

data ulc = var (l: nat)
 | lambda (l: nat) (d c: ulc)
 | app (f a: ulc)

What is the Language?

No, we need Inductive Types!

Inductive Core:

data tele (A: U) = emp | tel (n: name) (b: A) (t: tele A)
data branch (A: U) = br (n: name) (args: list name) (term: A)
data label (A: U) = lab (n: name) (t: tele A)
data ind = data_ (n: name) (t: tele lang) (labels: list (label lang))
 | case (n: name) (t: lang) (branches: list (branch lang))
 | ctor (n: name) (args: list lang)

Is that enough?

And we need Effects to access to business rules!

IO Core: Secure Storage:
data IO (A: U)
 = getLine (_: String → IO)
 | putLine (_: String)
 | pure (_: A)

data KV (A: U)
 = get (_: String → IO)
 | put (_: String)
 | sign (_: String → IO)
 | verify (_: String → IO)
 | pure (_: A)

IO

What about Infinitary IO?

data IOI.F (A State: U) = getLine (_: String → State)
 | putLine (_: String) (_: State)
 | pure (_: A)

data IOI (A State U) = intro (_: State). (_: State -> IOI.F A State)

Infinity IO

process : U = (protocol state: U) * (current: prod protocol state)
 * (act: id (prod protocol state))
 * (storage (prod protocol state))

spawn (protocol state: U) (init: prod protocol state)
 (action: id (prod protocol state)) : process

receive (p: process) : protocol p
send (p: process) (message: protocol p) : unit
execute (p: process) (message: protocol p) : process

Infinitely Running Processes

Models and Apps

TargetCoreLogical

Runtime LibProving Lib

1
2

6

3

4

Verification Process #1

1. Model Specification
2. Model Checking

3. Runtime Linkage
4. Target Machine Code Extraction

Verification Process #2
Models and Apps

CCHM

Proving Lib

1
2

3

4

7

Processes

Streams

5

6

Erlang

CPS

PTS

Runtime

8

9

1) Specification Languages (Z, UML, MLTT);
2) Model Checkers (TLA+, Twelf, Dedukti, Z3);
3) General Purpose Languages (Haskell, OCaml, Erlang, Scala, LISP);
4) Theorem Provers (Agda, Coq, HOL, ACL2);
5) Unified Execution Environments (HaLVM, LING, Mirage);
6) Contract Machines and Languages (EVM, Script VM, Sophia, Plutus)
7) Worflow Languages (BPMN)
9) Exchange Trading Languages (TpML)

Research Subject
Classification of Languages use in

Specification, Formalization and Verification process

1) Certification and Formalization (Agda): NbE, Extraction
2) Plutus IR (Lisp): Intermediate Language, Fix, No Pattern Match Compiler
3) Plutus Core: CEK, L machines
4) Scott Encoding of Data Types
5) Marlowe: Business Contracts (Alexander Nemish)
6) Plutus TxCompiler: Haskell Code to Plutus (getPlc)

Plutus Review
IOHK Certified Language for Haskel Embedding and Development

Plutus IR AST
data Term tyname name a
 = Let a Recursivity [Binding tyname name a] (Term tyname name a)
 | Var a (name a)
 | TyAbs a (tyname a) (Kind a) (Term tyname name a)
 | LamAbs a (name a) (Type tyname a) (Term tyname name a)
 | Apply a (Term tyname name a) (Term tyname name a)
 | Constant a (PLC.Constant a)
 | Builtin a (PLC.Builtin a)
 | TyInst a (Term tyname name a) (Type tyname a)
 | Error a (Type tyname a)
 | IWrap a (Type tyname a) (Type tyname a) (Term tyname name a)
 | Unwrap a (Term tyname name a)

Plutus IR Sample
IOHK Certified Language for Haskel Embedding and Development

(lam pubkey (con bytestring)
 (lam signed (con bytestring)
[{ (abs a (type) (lam b (all a (type) (fun a (fun a a)))
 (lam t (fun (all a (type) (fun a a)) a) (lam f (fun (all a (type) (fun a a)) a)
[[{b(fun(alla(type)(funaa))a)}tf] (abs a (type) (lam x a x))]))))
 (all a (type) (fun a a)) } [(builtin verifySignature) signed txhash pubkey] (lam
u (all a (type) (fun a a)) (abs a (type) (lam x a x)))
(lam u (all a (type) (fun a a)) (error (all a (type) (fun a a))))]))

Pure Core/CoC/Morte/Om
Theoretical Mimimum Scholarship Language Development

Toy Dependently Typed Language for Typechecking and Extraction

Specially created for Erlang deployment!
Real Monads Extracted from CoC to Erlang bytecode!

— CoC, Morte, Om (Pure Core)
— Further Evolution (Inductive Types): Dhall, Formality

> 'Monad':
'[<=<]'/0 '[=<<]'/0 '[>=>]'/0 '[>>=]'/0 forM/0
forM_/0 join/0 mapM/0 mapM_/0 module_info/0
module_info/1 replicateM/0 replicateM_/0 sequence/0 sequence_/0

Formality
Interaction Networks based Evaluator (Run-time Fusion)

GPU Backend, Rust Implementation
Faster than GHC

id(1000000000(List<Bool>, map(Bool, Bool, not), list))

Flips every bit in a list of 100 bits, a billion times. It prints the correct output
in 0.03s. You could increase that to beyound the number of stars in the
universe, and it'd still output the correct result, instantly.

https://github.com/moonad/whitepaper

